Распиновка COM порта(RS232). Распиновка COM порта(RS232) Разъем рс 232

Интерфейс RS-232C предназначен для подключения аппаратуры, передающей или принимающей данные (ООД - оконечное оборудование данных, или АПД - аппаратура передачи данных; DTE - Data Terminal Equipment), к оконечной аппаратуре каналов данных (АКД; DCE - Data Communication Equipment). В роли АПД может выступать компьютер, принтер, плоттер и другое периферийное оборудование. В роли АКД обычно выступает модем. Конечной целью подключения является соединение двух устройств АПД. Полная схема соединения приведена на рис. 1; интерфейс позволяет исключить канал удаленной связи вместе с парой устройств АКД, соединив устройства непосредственно с помощью нуль-модемного кабеля (рис. 2).

Рис.1. Полная схема соединения по RS-232C


Рис.2. Соединение по RS-232C нуль-модемным кабелем

Стандарт описывает управляющие сигналы интерфейса, пересылку данных, электрический интерфейс и типы разъемов. В стандарте предусмотрены асинхронный и синхронный режимы обмена, но COM-порты поддерживают только асинхронный режим. Функционально RS-232C эквивалентен стандарту МККТТ V.24/ V.28 и стыку С2, но они имеют различные названия сигналов.

Стандарт RS-232C описывает несимметричные передатчики и приемники - сигнал передается относительно общего провода - схемной земли (симметричные дифференциальные сигналы используются в других интерфейсах - например, RS-422). Интерфейс не обеспечивает гальванической развязки устройств. Логической единице (состояние MARK) на входе данных (сигнал RxD) соответствует диапазон напряжения от –12 до –3 В; логическому нулю - от +3 до +12 В (состояние SPACE). Для входов управляющих сигналов состоянию ON (“включено”) соответствует диапазон от +3 до +12 В, состоянию OFF (“выключено”) - от –12 до –3 В. Диапазон от –3 до +3 В - зона нечувствительности, обусловливающая гистерезис приемника: состояние линии будет считаться измененным только после пересечения порога (рис. 3). Уровни сигналов на выходах передатчиков должны быть в диапазонах от –12 до –5 В и от +5 до +12 В. Разность потенциалов между схемными землями (SG) соединяемых устройств должна быть менее 2 В, при более высокой разности потенциалов возможно неверное восприятие сигналов. Заметим, что сигналы уровней ТТЛ (на входах и выходах микросхем UART) передаются в прямом коде для линий TxD и RxD и в инверсном - для всех остальных.

Интерфейс предполагает наличие защитного заземления для соединяемых устройств, если они оба питаются от сети переменного тока и имеют сетевые фильтры.

ВНИМАНИЕ

Подключение и отключение интерфейсных кабелей устройств с автономным питанием должно производиться при отключенном питании. Иначе разность невыровненных потенциалов устройств в момент коммутации может оказаться приложенной выходным или входным (что опаснее) цепям интерфейса и вывести из строя микросхемы.

Стандарт RS-232C регламентирует типы применяемых разъемов.

На аппаратуре АПД (в том числе на COM-портах) принято устанавливать вилки DB-25P или более компактный вариант - DB-9P. Девятиштырьковые разъемы не имеют контактов для дополнительных сигналов, необходимых для синхронного режима (в большинстве 25-штырьковых разъемах эти контакты не используются).

На аппаратуре АКД (модемах) устанавливают розетки DB-25S или DB-9S.

Это правило предполагает, что разъемы АКД могут подключаться к разъемам АПД непосредственно или через переходные “прямые” кабели с розеткой и вилкой, у которых контакты соединены “один в один”. Переходные кабели могут являться и переходниками с 9 на 25-штырьковые разъемы (рис. 4).

Если аппаратура АПД соединяется без модемов, то разъемы устройств (вилки) соединяются между собой нуль-модемным кабелем (Zero-modem, или Z-modem), имеющим на обоих концах розетки, контакты которых соединяются перекрестно по одной из схем, приведенных на рис. 5.


Рис. 3. Прием сигналов RS-232C

Рис. 4. Кабели подключения модемов


Рис. 5. Нуль-модемный кабель: а - минимальный, б - полный

Если на каком-либо устройстве АПД установлена розетка - это почти 100 % того, что к другому устройству оно должно подключаться прямым кабелем, аналогичным кабелю подключения модема. Розетка устанавливается обычно на тех устройствах, у которых удаленное подключение через модем не предусмотрено.

В табл. 1 приведено назначение контактов разъемов COM-портов (и любой другой аппаратуры передачи данных АПД). Контакты разъема DB-25S определены стандартом EIA/TIA-232-E, разъем DB-9S описан стандартом EIA/TIA-574. У модемов (АКД) название цепей и контактов такое же, но роли сигналов (вход-выход) меняются на противоположные.

Таблица 1. Разъемы и сигналы интерфейса RS-232C

Обозначение цепи

Контакт разъема

№ провода кабеля выносного разъема PC

Направление

1 Ленточный кабель 8-битных мультикарт.
2 Ленточный кабель 16-битных мультикарт и портов на системных платах.
3 Вариант ленточного кабеля портов на системных платах.
4 Широкий ленточный кабель к 25-контактному разъему.

Подмножество сигналов RS-232C, относящихся к асинхронному режиму, рассмотрим с точки зрения COM-порта PC. Для удобства будем пользоваться мнемоникой названий, принятой в описаниях COM-портов и большинства устройств (она отличается от безликих обозначений RS-232 и V.24). Напомним, что активному состоянию управляющих сигналов (“включено”) и нулевому значению бита передаваемых данных соответствует положительный потенциал (выше +3 В) сигнала интерфейса, а состоянию “выключено” и единичному биту - отрицательный (ниже –3 В). Назначение сигналов интерфейса приведено в табл. 2. Нормальную последовательность управляющих сигналов для случая подключения модема к COM-порту иллюстрирует рис. 6.

Таблица 2. Назначение сигналов интерфейса RS-232C

Назначение

Protected Ground - защитная земля, соединяется с корпусом устройства и экраном кабеля

Signal Ground - сигнальная (схемная) земля, относительно которой действуют уровни сигналов

Transmit Data - последовательные данные - выход передатчика

Receive Data - последовательные данные - вход приемника

Request To Send - выход запроса передачи данных: состояние “включено” уведомляет модем о наличии у терминала данных для передачи. В полудуплексном режиме используется для управления направлением - состояние “включено” служит сигналом модему на переключение в режим передачи

Clear To Send - вход разрешения терминалу передавать данные. Состояние “выключено” запрещает передачу данных. Сигнал используется для аппаратного управления потоками данных

Data Set Ready - вход сигнала готовности от аппаратуры передачи данных (модем в рабочем режиме подключен к каналу и закончил действия по согласованию с аппаратурой на противоположном конце канала)

Data Terminal Ready - выход сигнала готовности терминала к обмену данными. Состояние “включено” поддерживает коммутируемый канал в состоянии соединения

Data Carrier Detected - вход сигнала обнаружения несущей удаленного модема

Ring Indicator - вход индикатора вызова (звонка). В коммутируемом канале этим сигналом модем сигнализирует о принятии вызова


Рис. 6. Последовательность управляющих сигналов интерфейса

  1. Установкой DTR компьютер указывает на желание использовать модем.
  2. Установкой DSR модем сигнализирует о своей готовности и установлении соединения.
  3. Сигналом RTS компьютер запрашивает разрешение на передачу и заявляет о своей готовности принимать данные от модема.
  4. Сигналом CTS модем уведомляет о своей готовности к приему данных от компьютера и передаче их в линию.
  5. Снятием CTS модем сигнализирует о невозможности дальнейшего приема (например, буфер заполнен) - компьютер должен приостановить передачу данных.
  6. Сигналом CTS модем разрешает компьютеру продолжить передачу (в буфере появилось место).
  7. Снятие RTS может означать как заполнение буфера компьютера (модем должен приостановить передачу данных в компьютер), так и отсутствие данных для передачи в модем. Обычно в этом случае модем прекращает пересылку данных в компьютер.
  8. Модем подтверждает снятие RTS сбросом CTS.
  9. Компьютер повторно устанавливает RTS для возобновления передачи.
  10. Модем подтверждает готовность к этим действиям.
  11. Компьютер указывает на завершение обмена.
  12. Модем отвечает подтверждением.
  13. Компьютер снимает DTR, что обычно является сигналом на разрыв соединения (“повесить трубку”).
  14. Модем сбросом DSR сигнализирует о разрыве соединения.

Из рассмотрения этой последовательности становятся понятными соединения DTR–DSR и RTS–CTS в нуль-модемных кабелях.

Асинхронный режим передачи

Асинхронный режим передачи является байт-ориентированным (символьно-ориентированным): минимальная пересылаемая единица информации - один байт (один символ). Формат посылки байта иллюстрирует рис. 7. Передача каждого байта начинается со старт-бита, сигнализирующего приемнику о начале посылки, за которым следуют биты данных и, возможно, бит четности (Parity). Завершает посылку стоп-бит, гарантирующий паузу между посылками. Старт-бит следующего байта посылается в любой момент после стоп-бита, то есть между передачами возможны паузы произвольной длительности. Старт-бит, имеющий всегда строго определенное значение (логический 0), обеспечивает простой механизм синхронизации приемника по сигналу от передатчика. Подразумевается, что приемник и передатчик работают на одной скорости обмена. Внутренний генератор синхронизации приемника использует счетчик-делитель опорной частоты, обнуляемый в момент приема начала старт-бита. Этот счетчик генерирует внутренние стробы, по которым приемник фиксирует последующие принимаемые биты. В идеале стробы располагаются в середине битовых интервалов, что позволяет принимать данные и при незначительном рассогласовании скоростей приемника и передатчика. Очевидно, что при передаче 8 бит данных, одного контрольного и одного стоп-бита предельно допустимое рассогласование скоростей, при котором данные будут распознаны верно, не может превышать 5 %. С учетом фазовых искажений и дискретности работы внутреннего счетчика синхронизации реально допустимо меньшее отклонение частот. Чем меньше коэффициент деления опорной частоты внутреннего генератора (чем выше частота передачи), тем больше погрешность привязки стробов к середине битового интервала, и требования к согласованности частот становятся более строгие. Чем выше частота передачи, тем больше влияние искажений фронтов на фазу принимаемого сигнала. Взаимодействие этих факторов приводит к повышению требований к согласованности частот приемника и передатчика с ростом частоты обмена.


Рис.7. Формат асинхронной передачи RS-232C

Формат асинхронной посылки позволяет выявлять возможные ошибки передачи.

  • Если принят перепад, сигнализирующий о начале посылки, а по стробу старт-бита зафиксирован уровень логической единицы, старт-бит считается ложным и приемник снова переходит в состояние ожидания. Об этой ошибке приемник может не сообщать.
  • Если во время, отведенное под стоп-бит, обнаружен уровень логического нуля, фиксируется ошибка стоп-бита.
  • Если применяется контроль четности, то после посылки бит данных передается контрольный бит. Этот бит дополняет количество единичных бит данных до четного или нечетного в зависимости от принятого соглашения. Прием байта с неверным значением контрольного бита приводит к фиксации ошибки.
  • Контроль формата позволяет обнаруживать обрыв линии: как правило, при обрыве приемник “видит” логический нуль, который сначала трактуется как старт-бит и нулевые биты данных, но потом срабатывает контроль стоп-бита.

Для асинхронного режима принят ряд стандартных скоростей обмена: 50, 75, 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600 и 115200 бит/с. Иногда вместо единицы измерения “бит/с” используют “бод” (baud), но при рассмотрении двоичных передаваемых сигналов это некорректно. В бодах принято измерять частоту изменения состояния линии, а при недвоичном способе кодирования (широко применяемом в современных модемах) в канале связи скорости передачи бит (бит/с) и изменения сигнала (бод) могут отличаться в несколько раз.

Количество бит данных может составлять 5, 6, 7 или 8 (5- и 6-битные форматы распространены незначительно). Количество стоп-бит может быть 1, 1,5 или 2 (“полтора бита” означает только длительность стопового интервала).

Управление потоком данных

Для управления потоком данных (Flow Control) могут использоваться два варианта протокола - аппаратный и программный. Иногда управление потоком путают с квитированием. Квитирование (handshaking) подразумевает посылку уведомления о получении элемента, в то время как управление потоком предполагает посылку уведомления о возможности или невозможности последующего приема данных. Зачастую управление потоком основано на механизме квитирования.

Аппаратный протокол управления потоком RTS/CTS (hardware flow control) использует сигнал CTS, который позволяет остановить передачу данных, если приемник не готов к их приему (рис. 8). Передатчик “выпускает” очередной байт только при включенной линии CTS. Байт, который уже начал передаваться, задержать сигналом CTS невозможно (это гарантирует целостность посылки). Аппаратный протокол обеспечивает самую быструю реакцию передатчика на состояние приемника. Микросхемы асинхронных приемопередатчиков имеют не менее двух регистров в приемной части - сдвигающий, для приема очередной посылки, и хранящий, из которого считывается принятый байт. Это позволяет реализовать обмен по аппаратному протоколу без потери данных.


Рис.8. Аппаратное управление потоком

Аппаратный протокол удобно использовать при подключении принтеров и плоттеров, если они его поддерживают. При непосредственном (без модемов) соединении двух компьютеров аппаратный протокол требует перекрестного соединения линий RTS - CTS.

При непосредственном соединении у передающего терминала должно быть обеспечено состояние “включено” на линии CTS (соединением собственных линий RTS - CTS), в противном случае передатчик будет “молчать”.

Применяемые в IBM PC приемопередатчики 8250/16450/16550 сигнал CTS аппаратно не отрабатывают, а только показывают его состояние в регистре MSR. Реализация протокола RTS/CTS возлагается на драйвер BIOS Int 14h, и называть его “аппаратным” не совсем корректно. Если же программа, пользующаяся COM-портом, взаимодействует с UART на уровне регистров (а не через BIOS), то обработкой сигнала CTS для поддержки данного протокола она занимается сама. Ряд коммуникационных программ позволяет игнорировать сигнал CTS (если не используется модем), и для них не требуется соединение входа CTS с выходом даже своего сигнала RTS. Однако существуют и иные приемопередатчики (например, 8251), в которых сигнал CTS отрабатывается аппаратно. Для них, а также для “честных” программ, использование сигнала CTS на разъемах (а то и на кабелях) обязательно.

Программный протокол управления потоком XON/XOFF предполагает наличие двунаправленного канала передачи данных. Работает протокол следующим образом: если устройство, принимающее данные, обнаруживает причины, по которым оно не может их дальше принимать, оно по обратному последовательному каналу посылает байт-символ XOFF (13h). Противоположное устройство, приняв этот символ, приостанавливает передачу. Когда принимающее устройство снова становится готовым к приему данных, оно посылает символ XON (11h), приняв который противоположное устройство возобновляет передачу. Время реакции передатчика на изменение состояния приемника по сравнению с аппаратным протоколом увеличивается, по крайней мере, на время передачи символа (XON или XOFF) плюс время реакции программы передатчика на прием символа (рис. 9). Из этого следует, что данные без потерь могут приниматься только приемником, имеющим дополнительный буфер принимаемых данных и сигнализирующим о неготовности заблаговременно (имея в буфере свободное место).


Рис.9. Программное управление потоком XON/XOFF

Преимущество программного протокола заключается в отсутствии необходимости передачи управляющих сигналов интерфейса - минимальный кабель для двустороннего обмена может иметь только 3 провода (см. рис. 5, а). Недостатком, помимо обязательного наличия буфера и большего времени реакции (снижающего общую производительность канала из-за ожидания сигнала XON), является сложность реализации полнодуплексного режима обмена. В этом случае из потока принимаемых данных должны выделяться (и обрабатываться) символы управления потоком, что ограничивает набор передаваемых символов.

Кроме этих двух распространенных стандартных протоколов, поддерживаемых и ПУ, и ОС, существуют и другие.

При вычислении последовательный порт представляет собой последовательный интерфейс связи, через который информация передается или выдается за раз. На протяжении большей части истории персональных компьютеров данные передавались через последовательные порты на устройства, такие как модемы, терминалы и различные периферийные устройства.

Хотя такие интерфейсы, как Ethernet, FireWire и USB, все отправляют данные в виде последовательного потока, термин «последовательный порт» обычно идентифицирует аппаратное обеспечение, более или менее совместимое со стандартом RS-232, предназначенное для взаимодействия с модемом или с аналогичной связью Устройства.

Современные компьютеры без последовательных портов могут потребовать конвертеры с последовательным интерфейсом, чтобы обеспечить совместимость с последовательными устройствами RS-232. Серийные порты все еще используются в таких приложениях, как системы промышленной автоматизации, научные приборы, системы продаж и некоторые промышленные и потребительские товары. Серверные компьютеры могут использовать последовательный порт в качестве консоли управления или диагностики. Сетевое оборудование (например, маршрутизаторы и коммутаторы) часто используют последовательную консоль для конфигурации. Серийные порты по-прежнему используются в этих областях, поскольку они просты, дешевы, а их консольные функции высоко стандартизированы и широко распространены.

Распиновка COM порта(RS232)

Существует 2-е разновидности com порта, 25-и пиновый старый разъем и сменившей его более новый 9-и пиновый разъем.

Ниже приведена схема типового стандартного 9-контактного разъема RS232 с разъемами, этот тип разъема также называется разъемом DB9.

  1. Обнаружение несущей(DCD).
  2. Получение данных(RXD).
  3. Передача данных(TXD).
  4. Готовность к обмену со стороны приемника(DTR).
  5. Земля(GND).
  6. Готовность к обмену со стороны источника(DSR).
  7. Запрос на передачу(RTS).
  8. Готовность к передаче(CTS).
  9. Сигнал вызова(RI).

RJ-45 к DB-9 Информация о выводе адаптера последовательного порта для коммутатора

Консольный порт представляет собой последовательный интерфейс RS-232, который использует разъём RJ-45 для подключения к управляющему устройству, например ПК или ноутбуку. Если на вашем ноутбуке или ПК нет штыря разъема DB-9, и вы хотите подключить ноутбук или ПК к коммутатору, используйте комбинацию адаптера RJ-45 и DB-9.

DB-9 RJ-45
Получение Данных 2 3
Передача данных 3 6
Готовность обмену 4 7
Земля 5 5
Земля 5 4
Готовность обмену 6 2
Запрос на передачу 7 8
Готовность к передаче 8 1

Цвета проводов:

1 Черный
2 Коричневый
3 Красный
4 Оранжевый
5 Желтый
6 Зеленый
7 Синий
8 Серый (или белый)

Существует несколько стандартов RS-232, различающихся буквой в суффиксе: RS-232C. RS-232D. RS-232E и пр. Вдаваться в различия между ними нет никакого смысла- они являются лишь последовательным усовершенствованием и детализацией технических особенностей одного и того же устройства. Все современные порты поддерживают спецификации RS-232D или RS- 232Е. В состав любого порта с интерфейсом RS-232 (в том числе СОМ-порта PC) входит универсальный асинхронный приемопередатчик (Universal Asynchronous Receiver-Transmitter. UART), который потому и носит название "универсального", что одинаков для всех подобных интерфейсов (кроме RS-232, это RS-485 и RS-422 1). Также в RS-232 входит схема преобразования логических уровней UART (это обычные логические уровни 0^5 илн 0+3,3 В) в уровни RS-232, где биты передаются разпополярными уровнями напряжения, притом инвертированными относительно IJART. В UART действует положительная логика, где логическая 1 есть высокий уровень (+3 или +5 В), а у RS-232 наоборот, логическая I есть отрицательный уровень от -3 до -12 В, а логический 0 - положительный уровень от +3 до +12 В.

Сама идея передачи по этому интерфейсу заключается в передачи целого байта по одному проводу в аиде последовательных импульсов, каждый ич которых может быть 0 или 1. Если в определенные моменты времени считывать состояние линии, то можно восстановить то. что было послано. Однако эта простая идея натыкается на определенные трудности. Для приемника и передатчика, связанных между собой тремя проводами ("земля" и два сиг нальных провода "туда" и "обратно"), приходится задавать скорость передачи и приема, которая должна быть одинакова для устройств на обоих концах линии. Эти скорости стандартизированы, и выбираются из ряда 1200, 2400. 4800, 9600. 14 400, 19 200. 28 800, 38 400, 56 000, 57 600, 115 200, 128 000, 256 000 (более медленные скорости я опустил) 2 . Число это обозначает количество передаваемых/принимаемых бит в секунду (бод). Проблема состоит в том, что приемник и передатчик - это физически совершенно разные системы, и скорости эти для них не могут быть строго одинаковыми в принципе (из-за разброса параметров тактовых генераторов), и даже если их каким-то фантастическим образом синхронизировать в начале, то они в любом случае быстро "разъедутся". Поэтому такая передача всегда сопровождается начальным (стартовым) битом, который служит для синхронизации. После нею идут восемь (или девять - если используется проверка на четность) информационных битов, а затем стоповые биты, которых может быт ь один, два и более, но это уже не имеет принципиального значения - почему, мы сейчас увидим.

Общая диаграмма передачи таких последовательностей показана на рис. ГИЛ. Хитрость заключается в том, что состояния линии передачи, называемые стартовый и столовый биты, имеют разные уровни. В данном случае стартовый бит передается положительным уровнем напряжения (логическим нулем), а столовый- отрицательным уровнем (логической единицей) 3 , по-

Обычный формат данных, по которому работает львиная доля всех устройств, обозначается 8nl, что читается так: 8 информационных бит, no parity,

тому фронт стартового бита всегда однозначно распознается. В этот-то момент и происходит синхронизация. Приемник отсчитывает время от фронта стартового бита, равное Ъ А периода заданной частоты обмена (чтобы попасть примерно в середину следующего бита), и затем восемь (или девять, если это задано заранее) раз подряд с заданным периодом регистрирует состояние линии. После этого линия переходит в состояние стопового бита и может в нем пребывать сколь угодно долго, пока не придет следующий стартовый бит. Задание минимального количества стоповых битов, однако, производится тоже- для того чтобы приемник знал, сколько времени минимально ему нужно ожидать следующего стартового бита (как минимум, это может быть, естественно, один период частоты обмена, т. е. один стоповый бит). Если по истечении этого времени стартовый бит не придет, приемник может регистрировать так называемый Timeout, т. е. перерыв, по-русски, и заняться своими делами. Если же линия "зависнет" в состоянии логического 0 (высокого уровня напряжения), то это может восприниматься устройством, как состояние "обрыва" линии- не очень удобный механизм, и в микроконтроллерах он через UART не поддерживается. Это не мешает нам, естественно, для установки или определения такого состояния просто отключать UART и устанавливать состояние логического нуля на выводе TxD (что и есть имитация физического "обрыва"), или определять уровень логического 0 на выводе RxD, но серьезных причин для использования этой возможности, я, честно говоря, не вижу (см. на эту тему также замечание в главе 20).

Рис. П4.1. Диаграмма передачи данных по последовательному интерфейсу RS-232

в формате 8N2

1 столовый бит. "No parity" означает, что проверка на четность не производится. Это самая распространенная схема работы такого порта, причем, т. к. никакими тайм-аугами (Timeout) мы также себе голову заморачивать не будем, то нам в принципе все равно, сколько стоповых битов будет, но во избежание излишних сложностей следует их устанавливать всегда одинаково - у передатчика и у приемника. На диаграмме рис. П4.1 показана передача некоего кода, а также, для наглядности, передача байта, состоящего из всеч единиц и из всех нулей в формате, опять же для наглядности, 8п2.

Из описанного алгоритма работы понятно, что погрешность несовпадения скоростей обмена может быть такой, чтобы фронты не "разъезжались" за время передачи/приема всех десяти-двенадцати битов более, чем на полпериода, т. е. в принципе фактическая разница скоростей может достигать 4-5%, но на практике их стараются все же сделать как можно ближе к стандартным величинам.

Приемник RS-232 часто дополнительно снабжают схемой, которая фиксирует уровень не единожды за период действия бита, а трижды, при этом за окончательный результат принимается уровень двух одинаковых из трех полученных состояний линии, таким образом удается избежать случайных помех. Длина линии связи по стандарту не должна превышать 15 м. но на практике это могут быть много большие величины. Если скорость передачи не выбирать слишком высокой, то такая линия может надежно работать на десятки метров (автору этих строк удавалось без дополнительных ухищрений наладить обмен с компьютером на скорости 4800 по кабелю, правда, довольно толстому, длиной около полукилометра). В табл. П4.1 приведены ориентировочные эмпирические данные по длине неэкранированной линии связи для различных скоростей передвчи.

Таблица П4.1. Длина кабеля RS-232 для разных скоростей передачи данных

Эти данные ни в коем случае не могут считаться официальными - слишком много влияющих факторов (уровень помех, толщина проводов, их взаимное расположение в кабеле, фактические уровни напряжения, выходное/входное сопротивление портов и т. п.). В случае экранированного кабеля 4 эти величины можно увеличить примерно в полтора-два раза. Во всех случаях использования "несанкционированной" длины кабеля связи следует применять меры по дополнительной проверке целостности данных- контроль четности, и/или программные способы (вычисление контрольных сумм и т. п.), описанные в главе 20.

Для работы в обе стороны нужно две линии, которые у каждого приемопередатчика обозначаются RxD (приемная) и TxD (передающая). В каждый момент времени может работать только одна из линий, т. е. приемопередатчик либо передает, либо принимает данные, но не одновременно (так называемый "полудуплексный режим" - это сделано потому, что у UART-микросхем чаще всего один регистр и на прием и на передачу). Кроме линий RxD и TxD, в разъемах RS-232 присутствуют также и другие линии. Полный список всех контактов для обоих стандартных разъемов типа DB (9- и 25-контактного) приведен в табл. П4.2. Нумерация контактов DB-разъема обычно написана прямо на нем, она также есть на рис. 10.8 в главе 10 (на примере гнезда разъема для игрового порта DB-15F).

Таблица П4.2. Контакты для ОВ-разьемов

Обозначение

Направление

Детектор принимаемого сигнала с линии (Data Carrier Detect)

Принимаемые данные (Receive Data)

Передаваемые данные (Transmit Data)

Готовность выходных данных (Data Terminal Ready)

Общий (Ground)

Готовность данных (Data Set Ready)

Запрос для передачи данных (Request То Send)

Таблица П4.2 (окончание)

Для нормальной совместной работы приемника и передатчика выводы RxD н TxD, естественно, нужно соединять накрест - TxD одного устройства с RxD второго и наоборот (то же относится и к RTS-CTS и т. д.). Кабели RS-232, которые устроены именно таким образом, называются еще нуль-модемными (в отличие от простых удлинительных). Их стандартная конфигурация показана на рис. П4.2. В варианте "с" (справа на рисунке) дополнительные выводы соединены именно так, как описано ранее.

Рис. П4.2. Схемы нуль-модемных кабелей RS-232: a.b - различные полные варианты,

с - минимальный вариант

Выходные линии RTS и DTR иногда могут использовать и для "незаконных" целей - питания устройств, подсоединенных к СОМ-порту. Именно так устроены, например, компьютерные мыши, работающие через СОМ. Позже мы покажем пример устройства (преобразователя уровней), которое будет использовать питание от вывода RTS. А как при необходимости можно установить эти линии в нужное состояние?

Под обозначениями RS-232, RS-422 и RS-485 понимаются интерфейсы для цифровой передачи данных. Стандарт RS-232 более известен как обычный СОМ порт компьютера или последовательный порт (хотя последовательным портом также можно считать Ethernet, FireWire и USB). Интерфейсы RS-422 и RS-485 широко применяются в промышленности для соединения различного оборудования.

В таблице приведены основные отличия интерфейсов RS-232, RS-422 и RS-485.

Название RS-232 RS-422 RS-485
Тип передачи Полный дуплекс Полный дуплекс Полудуплекс (2 провода),полный дуплекс (4 провода)
Максимальная дистанция 15 метров при 9600 бит/с 1200 метров при 9600 бит/с 1200 метров при 9600 бит/с
Задействованные контакты TxD, RxD, RTS, CTS, DTR, DSR, DCD, GND* TxA, TxB, RxA, RxB, GND DataA, DataB, GND
Топология Точка-точка Точка-точка Многоточечная
Макс. кол-во подключенных устройств 1 1 (10 устройств в режиме приема) 32 (с повторителями больше, обычно до 256)

* Для интерфейса RS-232 не обязательно использовать все линии контактов. Обычно используются линии данных TxD, RxD и провод земли GND, остальные линии необходимы для контроля над потоком передачи данных. Подробнее вы узнаете далее в статье.

Информация, передаваемая по интерфейсам RS-232, RS-422 и RS-485, структурирована в виде какого-либо протокола, например, в промышленности широко распространен протокол Modbus RTU.

Описание интерфейса RS-232

Интерфейс RS-232 (TIA/EIA-232) предназначен для организации приема-передачи данных между передатчиком или терминалом (англ. Data Terminal Equipment, DTE ) и приемником или коммуникационным оборудованием (англ. Data Communications Equipment, DCE ) по схеме точка-точка.

Скорость работы RS-232 зависит от расстояния между устройствами, обычно на расстоянии 15 метров скорость равна 9600 бит/с. На минимальном расстоянии скорость обычно равна 115.2 кбит/с, но есть оборудование, которое поддерживает скорость до 921.6 кбит/с.

Интерфейс RS-232 работает в дуплексном режиме, что позволяет передавать и принимать информацию одновременно, потому что используются разные линии для приема и передачи. В этом заключается отличие от полудуплексного режима, когда используется одна линия связи для приема и передачи данных, что накладывает ограничение на одновременную работу, поэтому в полудуплексном режиме в один момент времени возможен либо прием, либо передача информации.

Информация по интерфейсу RS-232 передается в цифровом виде логическими 0 и 1.

Логическому «0» (SPACE) соответствует напряжение в диапазоне от +3 до +15 В.

В дополнение к двум линиям приема и передачи, на RS-232 имеются специальные линии для аппаратного управления потоком и других функций.

Для подключения к RS-232 используется специальный разъем D-sub, обычно 9 контактный DB9, реже применяется 25 контактный DB25.

Разъемы DB делятся на Male – «папа» (вилка, pin) и Female – «мама» (гнездо, socket).

Распиновка разъема DB9 для RS-232

Распайка кабеля DB9 для RS-232

Существует три типа подключения устройств в RS-232: терминал-терминал DTE-DTE, терминал- коммуникационное оборудование DTE-DCE, модем-модем DCE-DCE.

Кабель DTE-DCE называется «прямой кабель», потому что контакты соединяются один к одному.

Кабель DCE-DCE называется «нуль-модемный кабель», или по-другому кросс-кабель.

Ниже приведены таблицы распиновок всех перечисленных типов кабеля, и далее отдельно представлена таблица с переводом основных терминов на русский язык.

Распиновка прямого кабеля DB9 для RS-232

Распиновка нуль-модемного кабеля DB9 для RS-232

Таблица с распиновкой разъемов DB9 и DB25.

DB9 DB25 Обозначение Название Описание
1 8 CD Carrier Detect Обнаружение несущей
2 3 RXD Receive Data Прием данных
3 2 TXD Transmit Data Передача данных
4 20 DTR Data Terminal Ready Готовность оконечного оборудования
5 7 GND System Ground Общий провод
6 6 DSR Data Set Ready Готовность оборудования передачи
7 4 RTS Request to Send Запрос на передачу
8 5 CTS Clear to Send Готов передавать
9 22 RI Ring Indicator Наличие сигнала вызова

Для работы с устройствами RS-232 обычно необходимо всего 3 контакта: RXD, TXD и GND. Но некоторые устройства требуют все 9 контактов для поддержки функции управления потоком передачи данных.

Структура передаваемых данных в RS-232

Одно сообщение, передаваемое по RS-232/422/485, состоит из стартового бита, нескольких бит данных, бита чётности и стопового бита.

Стартовый бит (start bit) - бит обозначающий начало передачи, обычно равен 0.

Данные (data bits) – 5, 6, 7 или 8 бит данных. Первым битом является менее значимый бит.

Бит четности (parity bit) – бит предназначенный для проверки четности. Служит для обнаружения ошибок. Может принимать следующие значения:

  • Четность (EVEN), принимает такое значение, чтобы количество единиц в сообщении было четным
  • Нечетность (ODD), принимает такое значение, чтобы количество единиц в сообщении было нечетным
  • Всегда 1 (MARK), бит четности всегда будет равен 1
  • Всегда 0 (SPACE), бит четности всегда будет равен 0
  • Не используется (NONE)

Стоповый бит (stop bit) – бит означающий завершение передачи сообщения, может принимать значения 1, 1.5 (Data bit =5), 2.

Например, сокращение 8Е1 обозначает, что передается 8 бит данных, используется бит четности в режиме EVEN и стоп бит занимает один бит.

Управление потоком в RS-232

Для того чтобы не потерять данные существует механизм управления потоком передачи данных, позволяющий прекратить на время передачу данных для предотвращения переполнения буфера обмена.

Есть аппаратный и программный метод управления.

Аппаратный метод использует выводы RTS/CTS. Если передатчик готов послать данные, то он устанавливает сигнал на линии RTS. Если приёмник готов принимать данные, то он устанавливает сигнал на линии CTS. Если один из сигналов не установлен, то передачи данных не произойдет.

Программный метод вместо выводов использует символы Xon и Xoff (в ASCII символ Xon = 17, Xoff = 19) передаваемые по тем же линиям связи TXD/RXD, что и основные данные. При невозможности принимать данные приемник передает символ Xoff. Для возобновления передачи данных посылается символ Xon.

Как проверить работу RS-232?

При использовании 3 контактов достаточно замкнуть RXD и TXD между собой. Тогда все переданные данные будут приняты обратно. Если у вас полный RS-232, тогда вам нужно распаять специальную заглушку. В ней должны быть соединены между собой следующие контакты:

DB9 DB25 Соединить
1 + 4 + 6 6 + 8 + 20 DTR -> CD + DSR
2 + 3 2 + 3 Tx -> Rx
7 + 8 4 + 5 RTS -> CTS

Описание интерфейса RS-422

Интерфейс RS-422 похож на RS-232, т.к. позволяет одновременно отправлять и принимать сообщения по отдельным линиям (полный дуплекс), но использует для этого дифференциальный сигнал, т.е. разницу потенциалов между проводниками А и В.

Скорость передачи данных в RS-422 зависит от расстояния и может меняться в пределах от 10 кбит/с (1200 метров) до 10 Мбит/с (10 метров).

В сети RS-422 может быть только одно передающее устройство и до 10 принимающих устройств.

Линия RS-422 представляет собой 4 провода для приема-передачи данных (2 скрученных провода для передачи и 2 скрученных провода для приема) и один общий провод земли GND.

Скручивание проводов (витая пара) между собой позволяет избавиться от наводок и помех, потому что наводка одинаково действует на оба провода, а информация извлекается из разности потенциалов между проводниками А и В одной линии.

Напряжение на линиях передачи данных может находится в диапазоне от -6 В до +6 В.

Логическому 0 соответствует разница между А и В больше +0,2 В.

Логической 1 соответствует разница между А и В меньше -0,2 В.

Стандарт RS-422 не определяет конкретный тип разъема, обычно это может быть клеммная колодка или разъем DB9.

Распиновка RS-422 зависит от производителя устройства и указывается в документации на него.

При подключении устройства RS-422 нужно сделать перекрестие между RX и TX контактами, как показано на рисунке.

Т.к. расстояние между приемником и передатчиком RS-422 может достигать 1200 метров, то для предотвращения отражения сигнала от конца линии ставится специальный 120 Ом согласующий резистор или "терминатор". Этот резистор устанавливается между RX+ и RX- контактами в начале и в конце линии.

Как проверить работу RS-422?

Для проверки устройств с RS-422 лучше воспользоваться конвертером из RS-422 в RS-232 или USB (I-7561U). Тогда вы сможете воспользоваться ПО для работы с СОМ портом.

Описание интерфейса RS-485

В промышленности чаще всего используется интерфейс RS-485 (EIA-485), потому что в RS-485 используется многоточечная топология, что позволяет подключить несколько приемников и передатчиков.

Интерфейс RS-485 похож на RS-422 тем что также использует дифференциальный сигнал для передачи данных.

Существует два типа RS-485:

  • RS-485 с 2 контактами, работает в режиме полудуплекс
  • RS-485 с 4 контактами, работает в режиме полный дуплекс

В режиме полный дуплекс можно одновременно принимать и передавать данные, а в режиме полудуплекс либо передавать, либо принимать.

В одном сегменте сети RS-485 может быть до 32 устройств, но с помощью дополнительных повторителей и усилителей сигналов до 256 устройств. В один момент времени активным может быть только один передатчик.

Скорость работы также зависит от длины линии и может достигать 10 Мбит/с на 10 метрах.

Напряжение на линиях находится в диапазоне от −7 В до +12 В.

  • Tutorial

Вместо вступления

Как обычно я предлагаю заняться странным - попробовать подключить несколько старых RS232 устройств, через один USB порт с помощью синей изоленты и смекалки. Статья не будет большой, скорее это описание что где взять и зачем вообще все это делать.

Зачем?

Нужно это бывает когда некий специальный аппаратный комплекс, состоящий из отдельных устройств и который выполняет какую-то единый функционал, вдруг начинают модифицировать. Разумеется что можно попробовать найти комплекс оборудования по новее, но в реальной жизнь на это идут очень редко. Начинают модифицировать то что есть. Иногда вдумчиво, но чаще как получится.

Как правило «мозгами» такого комплекса является компьютер у которого 100500 выходов RS232. Из примеров могу привести место кассира в супермаркете, банкоматы и тому подобное. С первым случаем столкнулся я.

Эти компьютеры не блещут мощностью, но отличаются космической стоимостью. Естественно он перестает отвечать требованиям современных технологий и многим приходит в голову идея заменить их на обычный ПК и получить приличную мощность по адекватной цене, однако быстро выясняется что RS232 на новых ПК вымер как класс. Теперь этот интерфейс стал сугубо специализированным. Соответственно надо или самостоятельно прикручивать кучу RS232 или искать уже готовое спец решение.

Разумеется что можно заменить само оборудование, но если вы посмотрите сколько стоит стационарный лазерный сканер приличной фирмы и помножите эту цену на их количество то передумаете.

Люди не посвященный в тему сразу радостно покупают пучок китайских USBtoRS232 переходников, а дальше все идет очень печально. Лучше этого не делать. Вторым вариантом является покупка специализированной платы расширения с кучей RS232. Этот вариант уже лучше и имеет право на жизнь, но тоже имеет свои недостатки. Например стоимость и проблемы с дровами если используется не Windows или не та версия. Так же не маловажным фактором является доступность в будущем, так как что-то выходит из строя и парк может расширятся в будущем. Потом оказывается что конкретная модель уже не выпускается или не постановляется в конкретную местность и т.д. В общем привязывать себя к конкретному устройству это всегда опасно, особенно если можно этого не делать.

Пробуем что-то сделать

Может показаться странным что примитивные RS232 устройства так сложно и дорого подключить по нормальному если по сути там обычно простые протоколы и примитивный физический уровень. А все потому что обычно подобные аппаратные комплексы используются в коммерческих доходных сферах и покупка оборудования по таким ценам оправдана, а само оборудование уже перешло в разряд специального. Спец оборудование = спец цена вопроса.

Однако все это не мешает попробовать собрать свой бюджетный велосипед. Бонусом получим возможность менять поведение такого своеобразного RS232 мультиплексора и полностью обойдем проблему написания USB драйверов. HID профиль поддерживается почти везде.

High level

Вторая часть софта это примеры и тесты собранные в сумбурный проект на Java написанный IDE IDEA. Предполагается что работа с устройством интегрируется в софт высокого уровня используя различные обертки по работе с USB стеком в зависимости от языка на кортом этот софт пишется. Сейчас сложно найти такой ЯП чтобы под него не существовало таких оберток. Отдельно для староверов отмечу что java и usb совместимы если готовить правельно, это доказано практикой и используется в коммерческом проекте.

В процессе тестирования выяснилось что работа в Linux и Windows с USB HID несколько отличается, работа отлаживалась через две библиотеки usb4java и hid4java. Работа через последнюю используется в Linux (Raspberry Pi 3).

Разница заключается в том что в Windows можно обратится напрямую к USB устройству даже если оно зарегистрировано как HID и писать\читать его конечные точки (endpoint). В Linux же приходится работать с hid устройством. То есть устанавливается стандартный драйвер hid и всё, работайте только с ним пожалуйста. Работа таким образом происходит немного медленнее чем напрямую, но напрямую тоже возможно если убедить систему не ставить драйвера. Это реально.

Как и обещал не растягиваю статью и не привожу подробное описание кода, те пару человек кому интересно могут посмотреть проекты и поиграться в живую, а остальным думаю будет полезнее принять к сведению что есть такое решение и прибегнуть к более глубокому изучению в случае необходимости.

Заключение

Представленное устройство это лишь одни из примеров как довольно легко можно приобщится к процессу создания нативных USB устройств и перестать наконец использовать переходники.

Не забываем плюсовать