Самостоятельный ремонт электроники. Курсы электронщика Ремонт и диагностика электронных схем

На чтение 4 мин.

Каждому вейперу рано или поздно приходится столкнуться с такой задачей, как ремонт электронных сигарет. Зачастую отремонтировать девайс можно своими руками, но для начала необходимо ознакомиться с его строением.

Конструкция

Итак, какие детали входят в состав vape? В электронной сигарете есть испаритель (атомайзер) и батарейный блок (мод). Атомайзер подает жидкость на нагревательный элемент (в большинстве случаев спираль) через специальный фитиль из ваты. Испарители бывают нескольких типов и различаются вместимостью, количеством пара, потенциалом раскрытия вкуса и сложностью обслуживания. Следует также отметить, что ряд типов относят к необслуживаемым. Они не подразумевают самостоятельной замены фитиля и перемотки спирали пользователем и требуют покупки расходных элементов.

Испаритель соединен резьбой с батарейным блоком, отвечающим за питание атомайзера электрическим током. Элемент питания может быть как встроенным в мод, так и сменным. Сами моды можно разделить на два основных типа: механический и VV/VW. В первом случае не используется контролирующая напряжение микросхема и ток подается напрямую на нагреватель, во втором пользователь может управлять напряжением посредством микросхемы. Функционально батарейные блоки различаются емкостью, наличием индикации заряда, типом управления и рядом дополнительных функций. Что делать, если электронная сигарета не работает? Рассмотрим возможные способы устранения неисправности.

Проблемы и решения

Выглядит список наиболее часто встречающихся проблем с электронной сигаретой так: сигарета перестала работать («не курится»), качество пара стало хуже, количество пара уменьшилось. Практика показывает, что в таких случаях предстоит ремонт испарителя электронной сигареты.

  1. Необходимо раскрутить vape, отделив таким образом атомайзер от мода.
  2. Разбираем испаритель, чтобы извлечь спираль и вату.
  3. Если на спирали есть нагар, то необходимо от него избавиться. Гораздо легче будет это сделать, предварительно прогрев ее на газу.
  4. Заменяем вату на новую и аккуратно собираем испаритель обратно.
  5. Соединяем мод и атомайзер, проверяем результат.
Если при разборке испарителя вы обнаружили сломавшийся элемент (к примеру, спираль), то его придется заменить. Если же электронная сигарета и вовсе не раскручивается, то придется прочистить или смазать резьбу. Но испаритель не всегда является единственной причиной, по которой не работает электронная сигарета.

Почему не работает устройство, хотя проделаны все вышеперечисленные действия? Возможно, проблема кроется в батарейном блоке. Если не следить за состоянием аккумулятора, он может выйти из строя. Когда ваша электронная сигарета мигает, это свидетельствует о том, что заряд батареи на исходе (за исключением того случая, когда мигание происходит при подключении атомайзера: он мог сломаться, попробуйте его заменить).

Читайте также: Особенность жидкости для электронных сигарет без никотина

В случае возникновения проблем с питанием, возможно, придется заменить свой мод целиком в том случае, если аккумулятор несъемный и/или сгорела электроника, либо поменять аккумулятор или микросхему по отдельности. Потребуется раскручивать девайс. Отремонтировать элемент питания самостоятельно у вас не получится, да и практического смысла это не имеет.

Если с атомайзером все в порядке, батарея заряжается, а индикаторы работы функционируют, проблема кроется в микросхеме мода. Раскрутите vape, разберите батарейный блок и проверьте, не отошли ли контакты микросхемы.

Стоит добавить, что электронная сигарета может переставать «парить», когда между атомайзером и блоком отсутствует контакт. Всегда удостоверяйтесь, что резьба закручена полностью.

Иногда в вейпе могут происходить протечки, короткие замыкания и другие мелкие сбои, из-за которых устройство может выйти из строя. К счастью, есть пара простых методов, которые следует пробовать каждый раз перед тем, как пытаться самостоятельно починить электронную сигарету.

Существуют два метода тестирования для диагностики неисправности электронной системы, устройства или печатной платы: функциональный контроль и внутрисхемный контроль. Функциональный контроль обеспе­чивает проверку работы тестируемого модуля, а внутрисхемный контроль состоит в проверке отдельных элементов этого модуля с целью выяснения их номиналов, полярности включения и т. п. Обычно оба этих метода при­меняются последовательно. С разработкой аппаратуры автоматического контроля появилась возможность очень быстрого внутрисхемного кон­троля с индивидуальной проверкой каждого элемента печатной платы, включая транзисторы, логические элементы и счетчики. Функциональ­ный контроль также перешел на новый качественный уровень благодаря применению методов компьютерной обработки данных и компьютерного контроля. Что же касается самих принципов поиска неисправностей, то они совершенно одинаковы, независимо от того, осуществляется ли про­верка вручную или автоматически.

Поиск неисправности должен проводиться в определенной логической последовательности, цель которой - выяснить причину неисправности и затем устранить ее. Число проводимых операций следует сводить к минимуму, избегая необязательных или бессмысленных проверок. Пре­жде чем проверять неисправную схему, нужно тщательно осмотреть ее для возможного обнаружения явных дефектов: перегоревших элементов, разрывов проводников на печатной плате и т. п. Этому следует уделять не более двух-трех минут, с приобретением опыта такой визуальный кон­троль будет выполняться интуитивно. Если осмотр ничего не дал, можно перейти к процедуре поиска неисправности.

В первую очередь выполняется функциональный тест: проверяется работа платы и делается попытка определить неисправный блок и по­дозреваемый неисправный элемент. Прежде чем заменять неисправный элемент, нужно провести внутрисхемное измерение параметров этого эле­мента, для того чтобы убедиться в его неисправности.

Функциональные тесты

Функциональные тесты можно разбить на два класса, или серии. Тесты серии 1 , называемые динамическими тестами, применяются к законченному электронному устройству для выделения неисправного каскада или блока. Когда найден конкретный блок, с которым связана неисправность, применяются тесты серии 2, или статические тесты, для определения одного или двух, возможно, неисправных элементов (резисторов, конден­саторов и т. п.).

Динамические тесты

Это первый набор тестов, выполняемых при поиске неисправности в элек­тронном устройстве. Поиск неисправности должен вестись в направлении от выхода устройства к его входу по методу деления пополам. Суть этого метода заключается в следующем. Сначала вся схема устройства де­лится на две секции: входную и выходную. На вход выходной секции подается сигнал, аналогичный сигналу, который в нормальных условиях действует в точке разбиения. Если при этом на выходе получается нор­мальный сигнал, значит, неисправность должна находиться во входной секции. Эта входная секция делится на две подсекции, и повторяется предыдущая процедура. И так до тех пор, пока неисправность не будет локализована в наименьшем функционально отличимом каскаде, напри­мер в выходном каскаде, видеоусилителе или усилителе ПЧ, делителе частоты, дешифраторе или отдельном логическом элементе.

Пример 1. Радиоприемник (рис. 38.1)

Самым подходящим первым делением схемы радиоприемника является деление на ЗЧ-секпию и ПЧ/РЧ-секцию. Сначала проверяется ЗЧ-секция: на ее вход (регулятор громкости) подается сигнал с частотой 1 кГц через разделительный конденсатор (10-50 мкФ). Слабый или искаженный сигнал, а также его полное отсутствие указывают на неисправность ЗЧ-секции. Делим теперь эту секцию на две подсекции: выходной каскад и предусилитель. Каждая подсекция прове­ряется, начиная с выхода. Если же ЗЧ-секция исправна, то из громкоговорителя должен быть слышен чистый тональный сигнал (1 кГц). В этом случае неис­правность нужно искать внутри ПЧ/РЧ-секции.

Рис. 38.1.

Очень быстро убедиться в исправности или неисправности ЗЧ-секции мож­но с помощью так называемого «отверточного» теста. Прикоснитесь концом отвертки к входным зажимам ЗЧ-секции (предварительно установив регулятор громкости на максимальную громкость). Если эта секция исправна, будет отче­тливо слышно гудение громкоговорителя.

Если установлено, что неисправность находится внутри ПЧ/РЧ-секции, сле­дует разделить ее на две подсекции: ПЧ-секцию и РЧ-секцию. Сначала прове­ряется ПЧ-секция: на ее вход, т. е. на базу транзистора первого УПЧ подается амплитудно-модулированный (AM) сигнал с частотой 470 кГц 1 через раздели­тельный конденсатор емкостью 0,01-0,1 мкФ. Для ЧМ-приемников требуется частотно-модулированный (ЧМ) тестовый сигнал с частотой 10,7 МГц. Если ПЧ-секция исправна, в громкоговорителе будет прослушиваться чистый тональный сигнал (400-600 Гц). В противном случае следует продолжить процедуру разбиения ПЧ-секции, пока не будет найден неисправный каскад, например УПЧ или детектор.

Если неисправность находится внутри РЧ-секции, то эта секция по возмож­ности разбивается на две подсекции и проверяется следующим образом. АМ-сигнал с частотой 1000 кГц подается на вход каскада через разделительный конденсатор емкостью 0,01-0,1 мкФ. Приемник настраивается на прием радио­сигнала с частотой 1000 кГц, или длиной волны 300 м в средневолновом диапа­зоне. В случае ЧМ-приемника, естественно, требуется тестовый сигнал другой частоты.

Можно воспользоваться и альтернативным методом проверки - методом покаскадной проверки прохождения сигнала. Радиоприемник включается и на­страивается на какую-либо станцию. Затем, начиная от выхода устройства, с по­мощью осциллографа проверяется наличие или отсутствие сигнала в контроль­ных точках, а также соответствие его формы и амплитуды требуемым критериям для исправной системы. При поиске неисправности в каком-либо другом элек­тронном устройстве на вход этого устройства подается номинальный сигнал.

Рассмотренные принципы динамических тестов можно применить к любому электронному устройству при условии правильного разбиения системы и подбора параметров тестовых сигналов.

Пример 2. Цифровой делитель частоты и дисплей (рис. 38.2)

Как видно из рисунка, первый тест выполняется в точке, где схема делится при­близительно на две равные части. Для изменения логического состояния сигна­ла на входе блока 4 применяется генератор импульсов. Светоизлучающий диод (СИД) на выходе должен изменять свое состояние, если фиксатор, усилитель и СИД исправны. Далее поиск неисправности следует продолжить в делителях, предшествующих блоку 4. Повторяется та же самая процедура с использовани­ем генератора импульсов, пока не будет определен неисправный делитель. Если СИД не изменяет свое состояние в первом тесте, то неисправность находится в блоках 4, 5 или 6. Тогда сигнал генератора импульсов следует подавать на вход усилителя и т. д.


Рис. 38.2.

Принципы статических тестов

Эта серия тестов применяется для определения дефектного элемента в каскаде, неисправность которого установлена на предыдущем этапе про­верок.

1. Начать с проверки статических режимов. Использовать вольтметр с чувствительностью не ниже 20 кОм/В.

2. Измерять только напряжение. Если требуется определить величину тока, вычислить его, измерив, падение напряжения на резисторе из­вестного номинала.

3. Если измерения на постоянном токе не выявили причину неисправно­сти, то тогда и только тогда перейти к динамическому тестированию неисправного каскада.

Проведение тестирования однокаскадного усилителя (рис. 38.3)

Обычно номинальные значения постоянных напряжений в контрольных точках каскада известны. Если нет, их всегда можно оценить с прие­млемой точностью. Сравнив реальные измеренные напряжения с их но­минальными значениями, можно найти дефектный элемент. В первую очередь определяется статический режим транзистора. Здесь возможны три варианта.

1. Транзистор находится в состоянии отсечки, не вырабатывая никакого выходного сигнала, или в состоянии, близком к отсечке («уходит» в область отсечки в динамическом режиме).

2. Транзистор находится в состоянии насыщения, вырабатывая слабый искаженный выходной сигнал, или в состоянии, близком к насыщению («уходит» в область насыщения в динамическом режиме).

$11.Транзистор в нормальном статическом режиме.


Рис. 38.3. Номинальные напряжения:

V e = 1,1 В, V b = 1,72 В, V c = 6,37В.

Рис. 38.4. Обрыв резистора R 3 , транзистор

находится в состоянии отсечки: V e = 0,3 В,

V b = 0,94 В, V c = 0,3В.

После того как установлен реальный режим работы транзистора, вы­ясняется причина отсечки или насыщения. Если транзистор работает в нормальном статическом режиме, неисправность связана с прохождением переменного сигнала (такая неисправность будет обсуждаться позже).

Отсечка

Режим отсечки транзистора, т. е. прекращение протекания тока, имеет место, когда а) переход база-эмиттер транзистора имеет нулевое напря­жение смещения или б) разрывается путь протекания тока, а именно: при обрыве (перегорании) резистора R 3 или резистора R 4 или когда не­исправен сам транзистор. Обычно, когда транзистор находится в состо­янии отсечки, напряжение на коллекторе равно напряжению источника питания V CC . Однако при обрыве резистора R 3 коллектор «плавает» и теоретически должен иметь потенциал базы. Если подключить вольт­метр для измерения напряжения на коллекторе, переход база-коллектор попадает в условия прямого смещения, как видно из рис. 38.4. По це­пи «резистор R 1 - переход база-коллектор - вольтметр» потечет ток, и вольметр покажет небольшую величину напряжения. Это показание полностью связано с внутренним сопротивлением вольтметра.

Аналогично, когда отсечка вызвана обрывом резистора R 4 , «плавает» эмиттер транзистора, который теоретически должен иметь потенциал ба­зы. Если подключить вольтметр для измерения напряжения на эмиттере, образуется цепь протекания тока с прямым смещением перехода база-эмиттер. В результате вольтметр покажет напряжение, немного большее номинального напряжения на эмиттере (рис. 38.5).

В табл. 38.1 подытоживаются рассмотренные выше неисправности.



Рис. 38.5. Обрыв резистора R 4 , транзистор

находится в состоянии отсечки:

V e = 1,25 В, V b = 1,74 В, V c = 10 В.

Рис. 38.6. Короткое замыкание пе­рехода

база-эмиттер, транзистор на­ходится в

состоянии отсечки: V e = 0,48 В, V b = 0,48 В, V c = 10 В.

Отметим, что термин «высокое V BE » означает превышение нормального напряжения прямого смещения эмиттерного перехода на 0,1 – 0,2 В.

Неисправность транзистора также создает условия отсечки. Напря­жения в контрольных точках зависят в этом случае от природы неис­правности и номиналов элементов схемы. Например, короткое замыкание эмиттерного перехода (рис. 38.6) приводит к отсечке тока транзистора и параллельному соединению резисторов R 2 и R 4 . В результате потенци­ал базы и эмиттера уменьшается до величины, определяемой делителем напряжения R 1 R 2 || R 4 .

Таблица 38.1. Условия отсечки

Неисправность

Причина

  1. 1. V e

V b

V c

V BE

Vac

Обрыв резистора R 1

  1. V e

V b

V c

V BE

Высокое Нормальное

V CC Низкое

Обрыв резистора R 4

  1. V e

V b

V c

V BE

Низкое

Низкое

Низкое

Нормальное

Обрыв резистора R 3


Потенциал коллектора при этом, очевидно, ра­вен V CC . На рис. 38.7 рассмотрен случай короткого замыкания между коллектором и эмиттером.

Другие случаи неисправности транзистора приведены в табл. 38.2.


Рис. 38.7. Короткое замыкание между коллектором и эмиттером, транзистор находится в состоянии отсечки: V e = 2,29 В, V b = 1,77 В, V c = 2,29 В.

Таблица 38.2

Неисправность

Причина

  1. V e

V b

V c

V BE

0 Нормальное

V CC

Очень высокое, не может быть выдержано функционирующим pn -переходом

Разрыв перехода база-эмиттер

  1. V e

V b

V c

V BE

Низкое Низкое

V CC Нормальное

Разрыв перехода база-коллектор

Насыщение

Как объяснялось в гл. 21, ток транзистора определяется напряжением прямого смещения перехода база-эмиттер. Небольшое увеличение этого напряжения приводит к сильному возрастанию тока транзистора. Ко­гда ток через транзистор достигает максимальной величины, говорят, что транзистор насыщен (находится в состоянии насыщения). Потенциал

Таблица 38.3

Неисправность

Причина

  1. 1. V e

V b

V c

Высокое (V c )

Высокое

Низкое

Обрыв резистора R 2 или мало сопротивление резистора R 1

  1. V e

V b

V c

Низкое

Очень низкое

Короткое замыкание конденсатора C 3

коллектора уменьшается при увеличении тока и при достижении насыще­ния практически сравнивается с потенциалом эмиттера (0,1 – 0,5 В). Вооб­ще, при насыщении потенциалы эмиттера, базы и коллектора находятся приблизительно на одинаковом уровне (см. табл. 38.3).

Нормальный статический режим

Совпадение измеренных и номинальных постоянных напряжений и от­сутствие или низкий уровень сигнала на выходе усилителя указывают на неисправность, связанную с прохождением переменного сигнала, на­пример на внутренний обрыв в разделительном конденсаторе. Прежде чем заменять подозреваемый на обрыв конденсатор, убедитесь в его неис­правности, подключая параллельно ему исправный конденсатор близкого номинала. Обрыв развязывающего конденсатора в цепи эмиттера (C 3 в схеме на рис. 38.3) приводит к уменьшению уровня сигнала на выходе усилителя, но сигнал воспроизводится без искажений. Большая утечка или короткое замыкание в этом конденсаторе обычно вносит изменения в режим транзистора по постоянному току. Эти изменения зависят от статических режимов предыдущих и последующих каскадов.

При поиске неисправности нужно помнить следующее.

1. Не делайте скоропалительных выводов на основе сравнения измерен­ного и номинального напряжений только в одной точке. Нужно запи­сать весь набор величин измеренных напряжений (например, на эмит­тере, базе и коллекторе транзистора в случае транзисторного каскада) и сравнить его с набором соответствующих номинальных напряжений.

2. При точных измерениях (для вольтметра с чувствительностью 20 кОм/В достижима точность 0,01 В) два одинаковых показания в разных контрольных точках в подавляющем большинстве случаев указывают на короткое замыкание между этими точками. Однако бывают и исключения, поэтому нужно выполнить все дальнейшие про­верки для окончательного вывода.


Особенности диагностики цифровых схем

В цифровых устройствах самой распространенной неисправностью явля­ется так называемое «залипание», когда на выводе ИС или в узле схемы постоянно действует уровень логического 0 («константный нуль») или ло­гической 1 («константная единица»). Возможны и другие неисправности, включая обрывы выводов ИС или короткое замыкание между проводни­ками печатной платы.


Рис. 38.8.

Диагностика неисправностей в цифровых схемах осуществляется пу­тем подачи сигналов логического импульсного генератора на входы про­веряемого элемента и наблюдения воздействия этих сигналов на состо­яние выходов с помощью логического пробника. Для полной проверки логического элемента «проходится» вся его таблица истинности. Рассмотрим, например, цифровую схему на рис. 38.8. Сначала записываются логические состояния входов и выходов каждого логического элемента и сопоставляются с состояниями в таблице истинности. Подозрительный логический элемент тестируется с помощью генератора импульсов и логи­ческого пробника. Рассмотрим, например, логический элемент G 1 . На его входе 2 постоянно действует уровень логического 0. Для проверки эле­мента щуп генератора устанавливается на выводе 3 (один из двух входов элемента), а щуп пробника - на выводе 1 (выход элемента). Обращаясь к таблице истинности элемента ИЛИ-НЕ, мы видим, что если на одном из входов (вывод 2) этого элемента действует уровень логического 0, то уровень сигнала на его выходе изменяется при изменении логического со­стояния второго входа (вывод 3).

Таблица истинности элемента G 1

Вывод 2

Вывод 3

Вывод 1

Например, если в исходном состоянии на выводе 3 действует логический 0, то на выходе элемента (вывод 1) присутствует логическая 1. Если теперь с помощью генератора изменить логическое состояние вывода 3 к логической 1, то уровень выходного сиг­нала изменится от 1 к 0, что и зарегистрирует пробник. Обратный резуль­тат наблюдается в том случае, когда в исходном состоянии на выводе 3 действует уровень логической 1. Аналогичные тесты можно применить к другим логическим элементам. При этих тестах нужно обязательно пользоваться таблицей истинности проверяемого логического элемента, потому что только в этом случае можно быть уверенным в правильности тестирования.

Особенности диагностики микропроцессорных систем

Диагностика неисправностей в микропроцессорной системе с шинной структурой имеет форму выборки последовательности адресов и данных, которые появляются на адресной шине и шине данных, и последующего сравнения их с хорошо известной последовательностью для работающей системы. Например, такая неисправность, как константный 0 на линии 3 (D 3) шины данных, будет указываться постоянным логическим нулем на линии D 3 . Соответствующий листинг, называемый листингом состояния, получается с помощью логического анализатора. Типичный листинг со­стояния, отображаемый на экране монитора, показан на рис. 38.9. Как альтернатива может использоваться сигнатурный анализатор для сбора потока битов, называемого сигнатурой, в некотором узле схемы и сравнения его с эталонной сигнатурой. Различие этих сигнатур указывает на неисправность.


Рис. 38.9.

В данном видео рассказывается о компьютерном тестере для диагностики неисправностей персональных компьютеров типа IBM PC:

Определять неисправность деталей, как установленных на плате, так и в «чистом» виде. Подбирать аналоги для замены, узнаете по каким основным критериям это делается, определять взаимозаменяемость деталей.

На практике узнаете типовые схемы включения с примерами включения в схеме реального устройства. В качестве примера мы рассмотрим схемы наиболее распространённых устройств: блок питания, ноутбуки, мониторы, зарядные устройства и т.д. В результате вы самостоятельно сможете проводить их ремонт на компонентном уровне.

Изучение различных электронных компонентов, встречающихся практически во всех без исключения бытовых и промышленных устройствах электронной техники. Построение схем на их базе, от элементарно простых до более сложных, с построением временных диаграмм и детальным изучением, протекающих процессов

Изучение работы операционных усилителей, компараторов, логических элементов. Также проводиться сборка небольших схем на основе почти всех перечисленных элементов, с изучением их работы, измерением основных параметров или исследованием схем с помощью осциллографа.

Изучение основных принципов работы измерительных приборов, предназначенных для измерения тока напряжения сопротивления, визуального исследования электрических сигналов (осциллограф)

Будут рассмотрены топологии построения схем и примеры реальных схем на базе той или иной топологии. Рассказано об особенностях данных схем и областях применения. Рассмотрим несколько основных типовых схем построения импульсных БП, рассказывается об особенностях и областях применения той или иной схемы. Далее слушателям будут предложены реальные схемы (розданы листы со схемами БП-разными) и они будут должны самостоятельно определить топологию данной схемы. Именно определение топологии построения схемы на 80% определяет успех дальнейшего ремонта, который в 99% случаев придётся проводить, не имея схемы конкретно именно ремонтируемого БП.

Всем слушателям будет предложено рассмотреть несколько десятков электронных компонентов, различного исполнения; по мощности, по способу маркировки (буквенно-цифровое или цветовое) и рассказано что и как обозначается, чем является (диод, резистор, транзистор и т.д.) и для чего служит. Какие ещё варианты исполнения существуют и где какие устанавливаются, в зависимости от характеристик. Мы подготавливаем мастеров по ремонту, чтобы вы могли определить неисправность на любой электронной схеме.

Практические занятия по поиску и устранению неисправностей в электронных устройствах. Можно принести что-то неработающее из дома, и здесь мы коллективно или разбившись на группы это ремонтируем. На практические занятия люди приносят, для ремонта, платы от стиральных машин, гироскутеров, блоков питания и другой техники.

В процессе обучения, даём ученикам различные вопросы или задачки, имеющие нестандартные решения, чтобы не просто вызубрили, как работает тот или иной элемент, но и могли помыслить самостоятельно и применить полученные знания на практике.

Как правило, мы идём навстречу пожеланиям учащихся и делаем по их выбору основной упор при изучении схем, в сторону компьютерной, бытовой техники или телефонов.

Курс подойдет любому, кто планирует разобраться в ремонте кокой-либо электроники. Бытовая техника, промышленная и любая другая, которая работает под управлением электроники.

Обучение на курсах будет интересно как людям с нулевым опытом, так и для тех, кто уже занимается ремонтом техники. Для начала вы можете приехать в наш центр и посмотреть своими глазами как проходят курсы. Вы сможете пообщаться с преподавателем и более подробно узнать о курсе. Мы берём людей любого возраста.

В любой из понедельников вы можете приехать и попробовать абсолютно бесплатно позаниматься на курсе электроники.

После прохождения всего курса вы получите навыки ремонта любой электроники. Все наши ученики могут в любое время обратиться за советом или помощью, и мы рады будем помочь. Бонус! все наши ученики записываются в общую группу в Watsapp, где вы сможете консультироваться и делиться опытом. Также у вас будет скидка на другие наши курсы и конечно же сертификат об окончании курсов по ремонту электроники.

Мы подготавливаем опытных и сертифицированных мастеров, полностью подготовленных к работе. Полученный во время обучения опыт и знания дадут вам уверенность в своих способностях для открытия собственной мастерской по ремонту современной электроники.

Сегодня обсудим радиоприемники. Видео про старенькую автомагнитолу 1960 года выпуска с Волги посмотрите на Ютуб, современные зарубежные полупроводниковые эквиваленты отличаются элементной базой только. Ламповая техника хороша, давая человеку представление о принципе действия прибора. Ремонт радиоприемника своими руками превращается в бесполезное, безнадежное занятие, если мастер неспособен разобраться в действиях. Человек не так удивляется, что зубные коронки служат детектором сильного радиосигнала с колонкой в ухе в виде наковаленки, если в курсе понятия амплитудной модуляции, служите базисом снабжения информацией аналогового канала вещания станции. Без проникновения в схему типичного радиоприемника текст превратился бы в чтиво специалистов узкой направленности, не представляя интереса широкому кругу читателей.

Устройство типичного радиоприемника

Приемник ловит волну, усиливает. Извлекает полезную информацию, подает на динамик. Создают конструкции согласно критериям:

  • экономической целесообразности;
  • качества;
  • надежности.

Резонансный контур радиоприемника

Радиоприемник начинается входным каскадом, настраиваемым на нужную волну. Антенна считается относительно широкополосным устройством, ловит большое число каналов. Чтобы среди месива обнаружить нужное, требуются некие ворота, пропускающие полезный сигнал. Порталом послужат резонансные контуры. Не важна теория, читателям полезно знать следующие факты:

  1. Резонансный контур пропускает из массы спектра узкий участок, ширина которого настраивается на полосу, занимаемую каналом. Например, при амплитудной модуляции 10 кГц, около того. Уровень характеристики по уровню 0,7 нормированного графика демонстрирует указанный размер по горизонтальной оси. Форма амплитудно-частотной характеристики задается типом контура.
  2. В простейшем случае резонансный контур образуется включенными параллельно индуктивностью, емкостью. Не единственный вариант. Подстройка контура под частоту ведется варикапами (конденсатор с переменной емкостью). Грубый выбор канала выполняется механическим переключателем, транзисторными ключами. Резонансные контуры ДВ, СВ, УКВ разные в физическом плане, ни один не может изменением емкости варикапа подстроиться под все диапазоны.
  3. Резонансный контур считается пассивным элементом, не несущим большой электрической нагрузки, ломается редко. Проследим поломку просто:
  • перестал работать только один диапазон, дело именно здесь, до смесителя (читайте ниже про усилитель высокой частоты);
  • если, напротив, работает только один диапазон, сломался переключатель: механика, транзисторный ключ.

Трудность прежняя: высокочастотное напряжение выхода резонансных контуров едва ли получится измерить, типичный мультиметр не рассчитан на такое применение.

Усилитель радиочастоты (высокой частоты) одевается экраном, снижая потери

Усилитель высокой частоты радиоприемника

Усилитель высокой частоты увеличивает амплитуду приходящего сигнала до уровня нормальной работы смесителя. По тракту идет исходная частота, волна разнится на порядок для ДВ и УКВ, на одном транзисторе, микросхеме выполнить электронную схему радиоприемника невозможно. Принято делить входные каскады для FM, прочих частот. Впрочем, касается старых моделей и современных. Усилитель высокой частоты не признается избирательной цепью – широкополосное устройство. Объяснить просто. Содержи участок тракта радиоприемника фильтры, каскады необходимо было бы перестраивать параллельно входным резонансным контурам. Затрудняет конструирование электрической схемы.

Смеситель, усилитель промежуточной частоты радиоприемника

Для нормальной работы детектора требуется получить сигнал фиксированной частоты. Для FM – 10,9 МГц (частотная модуляция), для ДВ, СВ – 450 кГц (амплитудная модуляция). Входная волна смешивается с частотой гетеродина (генератор высокочастотных опорных колебаний), выход дает разность, значения указаны выше. Гетеродин и смеситель станут по сути усилителями на транзисторе или микросхеме, у первого настроен режим генерации, второй работает в линейном режиме. Приемник построен на каскадах такого типа. Сюда относятся рассмотренные усилители высокой частоты, усилители промежуточной частоты, к которым обратимся ниже.

Детектор радиоприемника

Вслед за стабилизацией частоты идет извлечение из нее радиоприемником полезной информации станции вещания. Осуществляется в детекторах. Оба каскада строятся на диодах, транзисторах, микросхемах, разница в использовании колебаний. При амплитудной модуляции полезная информация закладывается размахом напряжения. Следовательно, простейший диод срезает отрицательную часть, огибающая получается после фильтрации RC-цепочкой. Так работает простейшим амплитудный детектор. Частотный вариант организуется, например, дискриминатором. Устройство, у которого пик амплитудно-частотной характеристики приходится на резонанс (10,9 МГц), к краям идет спад. В результате получается полезный сигнал.

Чтобы избежать перекосов, искажений сигнала, он должен быть симметричен на 100% относительно несущей. В действительности транспорт движется, эффект Допплера, прочие нюансы смещают сигнал. Вступает в игру автоматическая подстройка частоты. Каскад воздействует на резонансные контуры, гетеродины, удерживая прием в норме. Принцип действия основан на оценке симметрии приходящего сигнала. Спектр отражается зеркально от несущей (в обе стороны). Имеются исключения с одной боковой полосой, в радиоприемниках бытового назначения используется редко.

Для экономии энергии передатчика часто несущую срезают, оставляя пилот-сигнал, в мирных целях обычно не делают, усложняется конструкция приемника. Метод прогрессивный, указывает будущее. В приемнике производят восстановление несущей, недостающей части спектра согласно правилу, указанному выше.

Усилитель низкой частоты радиоприемника

Усилитель низкой частоты является ответственной частью, тихие речь и музыка не нужны клиентам. Каскад радиоприемника легко найти, здесь размещаются мощные микросхемы, транзисторы, снабженные здоровенными алюминиевыми радиаторами. Безотносительно элементной базе добиться радиоприемника орущего можно, потратив мощность, определенная часть рассеивается теплом. Перегрев блокируется радиаторами.

Важно! Германий боится температуры выше 80 градусов Цельсия. p-n-переходы из полупроводника обладают выгодными характеристиками. Приходится охлаждать силовые элементы радиаторами.

В радиоприемниках два канала или больше. На случай приема стерео. Разделение каналов на правый и левый принято в вещании с частотной модуляцией, УКВ диапазон, включая FM. Методика шифровки информации различная, не важно, когда назревает самостоятельный ремонт радиоприемников. Усилитель низкой частоты является общим каскадом, куда с амплитудного детектора информация подается сразу, с частотного – через схему определения наличия стерео.

Ремонт радиоприемников

В общем случае необходимо разбить радиоприемник на каскады. Назначение схем описали. Забыли блоки питания неспроста, обсуждали тему обзорами. В ламповых радиоприемниках необходимо большее число номиналов. Катоды ламп подогреваются переменным напряжением 6,3 В. Кстати, работоспособность каскадов можно оценить по свечению в темноте электродов. Необходимо выждать, пока радиоприемник прогреется, затем проверить наличие красноватых отблесков, выключив свет. Можно достаточно просто понять местоположение поломки. Колбы сгоревших ламп чернеют. Светиться могут в совершенно обычном стиле. Ремонт лампового радиоприемника проще, нежели современного.

Устройство визуально поделено на логические части, можно примерно локализовать неисправность. Устройство радиоприемника часто содержит контрольные контакты, другое дело, где найти информацию. Считаем, при желании информация отыщется на специализированном форуме, в технической библиотеке. Сейчас не принято, поминая старые добрые времена, снабжать радиоприемник подробной электрической схемой, каждый кто на что горазд. В случае с гибридной электроникой прибор может являться одной микросхемой, усилитель низкой частоты стоит отдельно. Придется найти новый радиоприемник.

В остальных случаях можно выполнить ремонт транзисторных радиоприемников, ремонт ламповых радиоприемников. Повремените последние сбрасывать со счетов. Музыканты доныне отдают предпочтение ламповым усилителям.

Итак, самостоятельный ремонт радиоприемника производится по указанной схеме:

  1. Разборка прибора для оценки внутреннего состояния, осмотр.
  2. Разбиение электрической схемы на логические части.
  3. Поиск документации на радиоприемник по доступным каналам.
  4. Опрос радиолюбителей на форумах по тематике.

Речь касается стареньких приборов – первоочередно счищаем пыль, смотрим монтаж, проверяем дорожки. Если легкое постукивание по прибору отзывается треском колонок радиоприемника, дело в нарушенном контакте. Трещины припоя, отслоение дорожек, разрывы – подлежит устранению, потрудитесь повторно проверить работоспособность. В автомагнитолах советских времен используется инвертор, шум которого услышите после включения. Ремонт старых радиоприемников полезен начинающим, позволяя научиться обращаться с аппаратурой. Мастера занимаются ежедневно. Изучают разновидности радиоприемников, методы ремонта.

Количество электронных приборов с каждым годом растет с небывалой скоростью.

Так, производство электроники в Санкт-петербурге может только радовать. Однако, как бы ни было высоко ее качество, сломаться она все-таки может. Иногда поломку можно исправить и своими силами, поэтому не нужно без нужды везти технику в сервисный центр.

С чего начать

Исправление неполадок электронных приборов вещь тонкая, а чтобы научиться это делать самостоятельно, нужны некоторые знания физики, минимум школьного курса.

Вы хотя бы должны иметь понятие о том, что такое:

  • сила тока;
  • сопротивление металлов;
  • индуктивность и т.д.

Также вам надо приобрести опыт паяния радиодеталей, и научится пользоваться электрическим тестером и мультиметром. Для ремонта вы должны будете приобрести все необходимое оборудование, а также в зависимости от вида ремонтируемой техники вы должны будете разбираться в электросхемах.

Множество людей думают, что починка ПК это дело мастерских. Но даже новички могут почить компьютер дома, не имея специальных навыков при наличии минимум оборудования. Самостоятельно, при наличии паяльника, вы можете заменить конденсаторы. Но в случае потребности замены микросхем, если вы не имеете опыта и оборудования, такую поломку не желательно чинить самому.

Если электроника не включается

При подсоединении к электрической сети прибор не работает, не срабатывают никакие светодиодные сигналы или не выдается звук, причина этому сгоревший блок питания. Попробуйте включить аппарат последовательно с мощной лампой накаливания, для предотвращения короткого замыкания. Когда блок питания работает, лампа не будет гореть, а в случае короткого замыкания на блоке лампа загорится.

Потом ищем неисправность в самом блоке питания. Это может быть простой обрыв кабеля или выгорание предохранителя. В случае успеха устраняем неполадку заменой новых деталей или пайкой отломанных.

Некорректная работа

Если ваша электроника работает с перебоями, периодически выдавая проблему, причин такой работы множество. Например, когда при нагрузках на компьютер он отключается, а по истечении некоторого времени снова работает, неисправность может крыться в перегреве или повреждении контактов.